Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(2*e^(-1.5*x))'The calculation above is a derivative of the function f (x)
(2)'*e^(-1.5*x)+2*(e^(-1.5*x))'
0*e^(-1.5*x)+2*(e^(-1.5*x))'
0*e^(-1.5*x)+2*e^(-1.5*x)*((-1.5*x)'*ln(e)+(-1.5*x*(e)')/e)
0*e^(-1.5*x)+2*e^(-1.5*x)*((-1.5*x)'*ln(e)+(-1.5*x*0)/e)
0*e^(-1.5*x)+2*e^(-1.5*x)*(((-1.5)'*x-1.5*(x)')*ln(e)+(-1.5*x*0)/e)
0*e^(-1.5*x)+2*e^(-1.5*x)*((0*x-1.5*(x)')*ln(e)+(-1.5*x*0)/e)
0*e^(-1.5*x)+2*e^(-1.5*x)*((0*x-1.5*1)*ln(e)+(-1.5*x*0)/e)
0*e^(-1.5*x)+2*e^(-1.5*x)*((-1.5*x*0)/e-1.5*ln(e))
0*e^(-1.5*x)+2*e^((-1.5)'*x-1.5*(x)')
0*e^(-1.5*x)+2*e^(0*x-1.5*(x)')
0*e^(-1.5*x)+2*e^(0*x-1.5*1)
0*e^(-1.5*x)+2*0^(-1.5*x)
0*e^(-1.5*x)+2*-1.5*e^(-1.5*x)
-3*e^(-1.5*x)
| Derivative of 7^(-5x) | | Derivative of 125/x | | Derivative of (x^-33)^(1/2) | | Derivative of (2)(t^(-3/4)) | | Derivative of (6/(r^3)) | | Derivative of 2(t^-3/4) | | Derivative of (x^2)(1-7x) | | Derivative of 2pi^8 | | Derivative of -55 | | Derivative of 50x^1/2 | | Derivative of e^(-ln(cos(x))) | | Derivative of cos(2*x)*sin(3*x) | | Derivative of t^8sin(t) | | Derivative of 6ln(x)/x | | Derivative of 24x-58 | | Derivative of 3(cos(x))^3 | | Derivative of x^2(66-4x) | | Derivative of x-32x/x^2 | | Derivative of Cos(3*0) | | Derivative of 6t^3 | | Derivative of sin(pi/4t) | | Derivative of (2/3)(x-1)^(3/2) | | Derivative of sin(e^4) | | Derivative of 5000ln(x) | | Derivative of x^8e^(3.5x) | | Derivative of 5t^-5 | | Derivative of 2*sin(x^2) | | Derivative of 100e^(-x^2) | | Derivative of 10e^-0.5x | | Derivative of (X^7)-(3x^4) | | Derivative of (X^7)-(3^4) | | Derivative of 13-7x |